论文标题

用于网络选择和资源分配的多代理强化学习在异质多鼠网络中

Multi-Agent Reinforcement Learning for Network Selection and Resource Allocation in Heterogeneous multi-RAT Networks

论文作者

Allahham, Mhd Saria, Abdellatif, Alaa Awad, Mhaisen, Naram, Mohamed, Amr, Erbad, Aiman, Guizani, Mohsen

论文摘要

移动设备的快速生产以及无线应用程序繁荣正在继续每天发展。这激发了使用多个无线电访问技术(Multi-Rat)并开发创新的网络选择技术以应对如此密集的需求的同时,同时改善服务质量(QOS)。因此,我们提出了一个分布式框架,用于在边缘级别进行动态网络选择,并在考虑各种应用程序的特征的同时,在无线电访问网络(RAN)级别上分配资源分配。特别是,我们的框架采用了深层的多代理增强学习(DMARL)算法,旨在最大程度地提高Edge节点的体验质量,同时延长节点的电池寿命并利用适应性压缩方案。确实,我们的框架可以以成本和节能方式从网络的边缘节点(具有多鼠能力)转移到云到云,同时保持不同支持应用程序的QoS要求。我们的结果描述了我们的解决方案在能源消耗,延迟和成本方面优于网络选择的最先进技术。

The rapid production of mobile devices along with the wireless applications boom is continuing to evolve daily. This motivates the exploitation of wireless spectrum using multiple Radio Access Technologies (multi-RAT) and developing innovative network selection techniques to cope with such intensive demand while improving Quality of Service (QoS). Thus, we propose a distributed framework for dynamic network selection at the edge level, and resource allocation at the Radio Access Network (RAN) level, while taking into consideration diverse applications' characteristics. In particular, our framework employs a deep Multi-Agent Reinforcement Learning (DMARL) algorithm, that aims to maximize the edge nodes' quality of experience while extending the battery lifetime of the nodes and leveraging adaptive compression schemes. Indeed, our framework enables data transfer from the network's edge nodes, with multi-RAT capabilities, to the cloud in a cost and energy-efficient manner, while maintaining QoS requirements of different supported applications. Our results depict that our solution outperforms state-of-the-art techniques of network selection in terms of energy consumption, latency, and cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源