论文标题
gan-duf:在自由形式的几何不确定性下设计的层次深度生成模型
GAN-DUF: Hierarchical Deep Generative Models for Design Under Free-Form Geometric Uncertainty
论文作者
论文摘要
深刻的生成模型表明,在学习紧凑和表达设计表示方面有效,可显着改善几何设计优化。但是,这些模型不考虑制造或制造引入的不确定性。量化这种不确定性的过去工作通常可以简化几何变化的假设,而“现实世界”,“自由形式”的不确定性及其对设计性能的影响由于高维度而难以量化。为了解决这个问题,我们在不确定性框架(GAN-DUF)下提出了一种基于生成的对抗网络的设计,该设计包含一个深层生成模型,同时学习了标称(理想)设计的紧凑表示,并有条件分布在任何标称设计的情况下。这打开了1)〜建立与形状和拓扑设计兼容的通用不确定性量化模型的新可能性,2)〜建模自由形式的几何不确定性,而无需对几何变异分布进行任何假设,而3)〜允许对新名称设计的不确定性进行快速预测。我们可以将拟议的深层生成模型与不确定性下设计的强大设计优化或基于可靠性的设计优化相结合。我们在两个现实世界的工程设计示例上展示了框架,并显示了其在制造后具有更好性能的解决方案的能力。
Deep generative models have demonstrated effectiveness in learning compact and expressive design representations that significantly improve geometric design optimization. However, these models do not consider the uncertainty introduced by manufacturing or fabrication. Past work that quantifies such uncertainty often makes simplifying assumptions on geometric variations, while the "real-world", "free-form" uncertainty and its impact on design performance are difficult to quantify due to the high dimensionality. To address this issue, we propose a Generative Adversarial Network-based Design under Uncertainty Framework (GAN-DUF), which contains a deep generative model that simultaneously learns a compact representation of nominal (ideal) designs and the conditional distribution of fabricated designs given any nominal design. This opens up new possibilities of 1)~building a universal uncertainty quantification model compatible with both shape and topological designs, 2)~modeling free-form geometric uncertainties without the need to make any assumptions on the distribution of geometric variability, and 3)~allowing fast prediction of uncertainties for new nominal designs. We can combine the proposed deep generative model with robust design optimization or reliability-based design optimization for design under uncertainty. We demonstrated the framework on two real-world engineering design examples and showed its capability of finding the solution that possesses better performances after fabrication.