论文标题

使用暹罗网络进行NIR部分面部图像的快速眼探测器

Fast Eye Detector Using Siamese Network for NIR Partial Face Images

论文作者

Ogino, Yuka, Shoji, Yuho, Toizumi, Takahiro, Oami, Ryoma, Tsukada, Masato

论文摘要

本文提出了一种基于暹罗网络的快速眼检测方法,用于近红外(NIR)部分面部图像。 NIR部分面部图像不包括一个受试者的整个面部,因为它们是使用框架速率和分辨率限制的IRIS识别系统捕获的。虹膜识别系统(例如IRIS)在移动(IOTM)系统中需要快速准确的眼睛检测作为预处理。我们的目标是通过高速,左眼和右眼之间的高歧视性能以及眼中心的高位置精度来设计眼睛检测。我们的方法采用暹罗网络,并使用快速轻巧的CNN骨干网进行粗糙至精细的位置估计。网络输出图像的特征和相似性图表示眼睛的粗糙位置。具有高相似性的特征部分的回归可以优化眼睛的粗位置,以高精度获得罚款位置。我们通过将其与常规方法(包括SOTA)进行比较,从位置准确性,歧视性能和处理速度进行比较来证明该方法的有效性。我们的方法在速度方面取得了出色的性能。

This paper proposes a fast eye detection method that is based on a Siamese network for near infrared (NIR) partial face images. NIR partial face images do not include the whole face of a subject since they are captured using iris recognition systems with the constraint of frame rate and resolution. The iris recognition systems such as the iris on the move (IOTM) system require fast and accurate eye detection as a pre-process. Our goal is to design eye detection with high speed, high discrimination performance between left and right eyes, and high positional accuracy of eye center. Our method adopts a Siamese network and coarse to fine position estimation with a fast lightweight CNN backbone. The network outputs features of images and the similarity map indicating coarse position of an eye. A regression on a portion of a feature with high similarity refines the coarse position of the eye to obtain the fine position with high accuracy. We demonstrate the effectiveness of the proposed method by comparing it with conventional methods, including SOTA, in terms of the positional accuracy, the discrimination performance, and the processing speed. Our method achieves superior performance in speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源