论文标题

在一个非局部固定框架中的粗粒元素zwanzig动力学

Coarse-grained Mori-Zwanzig dynamics in a time-non-local stationary-action framework

论文作者

Luchi, Piero, Menichetti, Roberto, Lattanzi, Gianluca, Potestio, Raffaello

论文摘要

粗粒(CG)模型是简化的软物质系统的表示,通常用于克服计算研究中的大小和时间限制。已经开发出许多方法来构建和参数为各种自然和人工来源系统的有效模型。但是,尽管以更详细的表示获得的固定和平衡可观察到极为准确,但CG模型通常无法保留参考系统的原始时间尺度,从而使其动力学属性。为了提高我们对粗粒对模型系统动力学的影响的理解,我们在这里制定了CG模型运动的Mori-Zwanzig概括性Langevin方程(GLES),以时间非本地平稳性原则。后者与数据驱动的优化策略结合使用,以确定GLE的参数。我们将这种方法应用于标准热力学条件下的水分子系统,表明它可以基本上改善相应CG模型的动力学特征。

Coarse-grained (CG) models are simplified representations of soft matter systems that are commonly employed to overcome size and time limitations in computational studies. Many approaches have been developed to construct and parametrise such effective models for a variety of systems of natural as well as artificial origin. However, while extremely accurate in reproducing the stationary and equilibrium observables obtained with more detailed representations, CG models generally fail to preserve the original time scales of the reference system, and hence its dynamical properties. In order to improve our understanding of the impact of coarse-graining on the model system dynamics, we here formulate the Mori-Zwanzig generalised Langevin equations (GLEs) of motion of a CG model in terms of a time non-local stationary-action principle. The latter is employed in combination with a data-driven optimisation strategy to determine the parameters of the GLE. We apply this approach to a system of water molecules in standard thermodynamical conditions, showing that it can substantially improve the dynamical features of the corresponding CG model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源