论文标题

slrnet:通过标签重用人类分解图像的标签的半监督语义分割

SLRNet: Semi-Supervised Semantic Segmentation Via Label Reuse for Human Decomposition Images

论文作者

Mousavi, Sara, Yang, Zhenning, Cross, Kelley, Steadman, Dawnie, Mockus, Audris

论文摘要

语义细分是一项具有挑战性的计算机视觉任务,要求大量像素级注释数据。产生此类数据是一个耗时且昂贵的过程,尤其是对于缺乏专家(例如医学或法医人类学)的领域。尽管已经开发出了许多半监督方法,以从有限的标记数据和大量未标记的数据中获得最大的收益,但特定于领域的现实世界数据集通常具有特征,这些特征既降低了现成的最先进的方法的有效性,又可以提供创建利用这些特征的新方法的机会。我们提出和评估一种半监督的方法,该方法通过利用现有相似性来重用可用的数据集图像,同时动态加权这些重复使用的标签在训练过程中的影响。我们在人类分解图像的大数据集上评估了我们的方法,并发现我们的方法虽然在概念上却优于最先进的一致性和基于伪标记的方法,用于分割此数据集。本文包括人类分解的图形内容。

Semantic segmentation is a challenging computer vision task demanding a significant amount of pixel-level annotated data. Producing such data is a time-consuming and costly process, especially for domains with a scarcity of experts, such as medicine or forensic anthropology. While numerous semi-supervised approaches have been developed to make the most from the limited labeled data and ample amount of unlabeled data, domain-specific real-world datasets often have characteristics that both reduce the effectiveness of off-the-shelf state-of-the-art methods and also provide opportunities to create new methods that exploit these characteristics. We propose and evaluate a semi-supervised method that reuses available labels for unlabeled images of a dataset by exploiting existing similarities, while dynamically weighting the impact of these reused labels in the training process. We evaluate our method on a large dataset of human decomposition images and find that our method, while conceptually simple, outperforms state-of-the-art consistency and pseudo-labeling-based methods for the segmentation of this dataset. This paper includes graphic content of human decomposition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源