论文标题

深度神经网络可以学习过程模型结构吗?评估框架和分析

Can deep neural networks learn process model structure? An assessment framework and analysis

论文作者

Peeperkorn, Jari, Broucke, Seppe vanden, De Weerdt, Jochen

论文摘要

预测过程监视与(业务)过程中正在进行的案例的预测有关。预测任务通常集中于剩余时间,结果,下一个事件或完整的后缀预测。近年来,使用机器和深度学习的各种方法针对这些任务提出了建议。尤其是复发性神经网络(RNN),例如长期短期记忆网(LSTMS)的流行。但是,没有研究重点是这种基于神经网络的模型是否可以真正学习基础过程模型的结构。例如,这种神经网络可以有效地学习并行行为或循环吗?因此,在这项工作中,我们提出了一种评估方案,以新的健身,精确度和概括度指标进行补充,专门针对衡量深度学习模型学习过程模型结构的能力而定制。我们将此框架应用于具有简单控制流程的几个过程模型,即下一个事件预测的任务。我们的结果表明,即使对于这种简单的模型,也需要仔细调整过度拟合对策,以允许这些模型学习过程模型结构。

Predictive process monitoring concerns itself with the prediction of ongoing cases in (business) processes. Prediction tasks typically focus on remaining time, outcome, next event or full case suffix prediction. Various methods using machine and deep learning havebeen proposed for these tasks in recent years. Especially recurrent neural networks (RNNs) such as long short-term memory nets (LSTMs) have gained in popularity. However, no research focuses on whether such neural network-based models can truly learn the structure of underlying process models. For instance, can such neural networks effectively learn parallel behaviour or loops? Therefore, in this work, we propose an evaluation scheme complemented with new fitness, precision, and generalisation metrics, specifically tailored towards measuring the capacity of deep learning models to learn process model structure. We apply this framework to several process models with simple control-flow behaviour, on the task of next-event prediction. Our results show that, even for such simplistic models, careful tuning of overfitting countermeasures is required to allow these models to learn process model structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源