论文标题

自动:将物理学整合到高斯流程中的联合框架

AutoIP: A United Framework to Integrate Physics into Gaussian Processes

论文作者

Long, Da, Wang, Zheng, Krishnapriyan, Aditi, Kirby, Robert, Zhe, Shandian, Mahoney, Michael

论文摘要

物理建模对于许多现代科学和工程应用至关重要。从数据科学或机器学习的角度来看,更多的域,无知,数据驱动的模型是普遍的,物理知识 - 通常以微分方程表示 - 有价值,因为它与数据是互补的,并且可能有助于克服诸如数据稀疏,噪声,噪声和不可能的问题。在这项工作中,我们提出了一个简单但功能强大且通用的框架 - 自动构建物理学,可以将各种微分方程集成到高斯流程(GPS)中,以增强预测准确性和不确定性量化。这些方程可以是线性或非线性,空间,时间或时空,具有未知源项的完整或不完整,等等。基于内核分化,我们在示例目标函数,方程相关衍生物和潜在源函数的值之前构建了GP,它们都是由多元高斯分布共同的。采样值被馈送到两个可能性:一个适合观测值,另一个符合方程式。我们使用美白方法来逃避采样函数值和内核参数之间的强依赖性,并开发出一种随机变分学习算法。在模拟和几个现实世界应用中,即使使用粗糙的,不完整的方程式,自动元素都显示出对香草GPS的改进。

Physical modeling is critical for many modern science and engineering applications. From a data science or machine learning perspective, where more domain-agnostic, data-driven models are pervasive, physical knowledge -- often expressed as differential equations -- is valuable in that it is complementary to data, and it can potentially help overcome issues such as data sparsity, noise, and inaccuracy. In this work, we propose a simple, yet powerful and general framework -- AutoIP, for Automatically Incorporating Physics -- that can integrate all kinds of differential equations into Gaussian Processes (GPs) to enhance prediction accuracy and uncertainty quantification. These equations can be linear or nonlinear, spatial, temporal, or spatio-temporal, complete or incomplete with unknown source terms, and so on. Based on kernel differentiation, we construct a GP prior to sample the values of the target function, equation-related derivatives, and latent source functions, which are all jointly from a multivariate Gaussian distribution. The sampled values are fed to two likelihoods: one to fit the observations, and the other to conform to the equation. We use the whitening method to evade the strong dependency between the sampled function values and kernel parameters, and we develop a stochastic variational learning algorithm. AutoIP shows improvement upon vanilla GPs in both simulation and several real-world applications, even using rough, incomplete equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源