论文标题

定向的界限的色度图

The oriented chromatic number of random graphs of bounded degree

论文作者

Gunderson, Karen, Nir, JD

论文摘要

随机图$ \ Mathcal {g}(n,p)$的色数长期以来一直研究过,并启发了几个地标结果。在$ p = d/n $的情况下,achlioptas和naor表明,色数渐近地集中在$ k_d $或$ k_d+1 $的情况下,其中$ k_d $是最小的整数,因此$ d <2k_d \ log log log k_d $。 Kemkes等。后来证明了相同的结果适用于$ \ mathcal {g}(n,d)$,随机$ d $ - regular Graph。我们考虑定向模型的定向色数$ \ vec {\ Mathcal {g}}}(n,p)$和$ \ vec {\ Mathcal {g}}}(n,d)$,改善了从$ o(d^2^d)$ o(d^2^d)$ o(d^2^d)$(d^2^d)$(d^2^d)$(d^2^d)$(

The chromatic number of the random graph $\mathcal{G}(n,p)$ has long been studied and has inspired several landmark results. In the case where $p = d/n$, Achlioptas and Naor showed the chromatic number is asymptotically concentrated at $k_d$ or $k_d+1$, where $k_d$ is the smallest integer such that $d < 2k_d\log k_d$. Kemkes et al. later proved the same result holds for $\mathcal{G}(n,d)$, the random $d$-regular graph. We consider the oriented chromatic number of the directed models $\vec{\mathcal{G}}(n,p)$ and $\vec{\mathcal{G}}(n,d)$, improving the best known upper bound from $O(d^2 2^d)$ to $O(\sqrt{e}^d)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源