论文标题
评估具有IOMB的CMIP模型:与垂直温度梯度相关的现代海洋碳吸收速率和运输到海洋内部
Evaluation of CMIP models with IOMB: Rates of contemporary ocean carbon uptake linked with vertical temperature gradients and transport to the ocean interior
论文作者
论文摘要
国际海洋模型基准测试(IOMB)软件包是一种新的社区资源,用于评估CMIP5和CMIP6地球系统模型(ESMS)的表面和上海变量,我们的分析揭示了CMIP6的多模型平均值的一般改进,与大多数变量相比,我们检查了CMIP5的多模型平均值,我们检查了表面营养成分,包括表面营养成分,包括表面营养成分,温度,温度,盐分和盐分。我们发现CMIP5和CMIP6海洋模型都低估了1970年代后人为的二氧化碳摄取。在1994年至2007年期间,来自CMIP6的多模型平均值产生的平均累积碳摄取量为27.2 +-2.2 pg C,比从两组观测值中得出的32.0 +-5.7 pg c估计值低约15%。北大西洋北部和南半球(30-60°S)的人为碳库存变化的负偏见存在。对于提供氯氟化合物(CFC)模拟模拟的少数模型,我们证明了具有负人为DIC的区域与CFC浓度有负偏见的区域一致。这种关系表明,在某些模型中低估了人为碳存储的情况,部分原因是表面和内海之间的弱运输。为了检查整个CMIP5和CMIP6型号的稳定性,我们研究了200至1000m之间的垂直温度梯度,作为在表面和更深水域之间进行分层和交换的度量。在不同模型和不同MIP的全球范围内,我们发现垂直温度梯度的偏见与人为碳吸收的偏差之间存在线性关系,这与假设的假设是,海洋碳汇中模型偏见与地表到室外运输的偏见有关。
The International Ocean Model Benchmarking (IOMB) software package is a new community resource used here to evaluate surface and upper ocean variables from CMIP5 and CMIP6 Earth System Models (ESMs) Our analysis reveals general improvement in the multi-model mean of CMIP6 compared to CMIP5 for most of the variables we examined including surface nutrients, temperature, and salinity. We find that both CMIP5 and CMIP6 ocean models underestimate anthropogenic carbon dioxide uptake after the 1970s. For the period of 1994 to 2007, the multi-model mean from CMIP6 yields a mean cumulative carbon uptake of 27.2 +-2.2 Pg C, which is about 15% lower than the 32.0+-5.7 Pg C estimate derived from two sets of observations. Negative biases in the change in anthropogenic carbon inventory exist in the northern North Atlantic and at mid-latitudes in the southern hemisphere (30-60°S). For the few models that provided simulations of chlorofluorocarbon (CFC), we demonstrate that regions with negative anthropogenic DIC biases coincide with regions that have a negative bias in CFC concentrations. This relationship suggests that underestimates of anthropogenic carbon storage in some models originates, in part, from weak transport between the surface and interior ocean. To examine the robustness of this attribution across the full suite of CMIP5 and CMIP6 models, we examined the vertical temperature gradient between 200 and 1000m as a metric for stratification and exchange between the surface and deeper waters. On a global scale across different models and different MIPs we find a linear relationship between the bias of vertical temperature gradients and the bias in anthropogenic carbon uptake, consistent with the hypothesis that model biases in the ocean carbon sink are related to biases in surface-to-interior transport.