论文标题

学生心理健康疾病评估的机器学习模型的经验比较

An empirical comparison of machine learning models for student's mental health illness assessment

论文作者

Muzumdar, Prathamesh, Basyal, Ganga Prasad, Vyas, Piyush

论文摘要

在各种情况下,在高等教育文献中探讨了学生的心理健康问题,包括涉及定量和定性方法的经验工作。然而,发现相对较少的研究,目的是直接从数据中学习信息的计算方法,而无需依赖于预定方程作为分析方法的设定参数。这项研究旨在调查高等教育中使用的机器学习(ML)模型的性能。所考虑的ML模型是天真的贝叶斯,支持向量机,K-Nearest邻居,逻辑回归,随机梯度下降,决策树,随机森林,XGBoost(极端梯度增强决策树)和NGBOOST(自然)算法。考虑到学生心理健康疾病的因素,我们遵循数据处理的三个阶段:细分,提取和分类。我们针对分类性能指标(例如精度,精度,召回,F1得分和预测的运行时间)评估了这些ML模型。经验分析包括两个贡献:1。它检查了基于调查的教育数据集上各种ML模型的性能,从而推断了基于树的XGBoost算法的显着分类性能; 2。它探讨了数据集中的重要性[变量],以推断社会支持,学习环境和儿童逆境对学生的心理健康疾病的重要重要性。

Student's mental health problems have been explored previously in higher education literature in various contexts including empirical work involving quantitative and qualitative methods. Nevertheless, comparatively few research could be found, aiming for computational methods that learn information directly from data without relying on set parameters for a predetermined equation as an analytical method. This study aims to investigate the performance of Machine learning (ML) models used in higher education. ML models considered are Naive Bayes, Support Vector Machine, K-Nearest Neighbor, Logistic regression, Stochastic Gradient Descent, Decision Tree, Random Forest, XGBoost (Extreme Gradient Boosting Decision Tree), and NGBoost (Natural) algorithm. Considering the factors of mental health illness among students, we follow three phases of data processing: segmentation, feature extraction, and classification. We evaluate these ML models against classification performance metrics such as accuracy, precision, recall, F1 score, and predicted run time. The empirical analysis includes two contributions: 1. It examines the performance of various ML models on a survey-based educational dataset, inferring a significant classification performance by a tree-based XGBoost algorithm; 2. It explores the feature importance [variables] from the datasets to infer the significant importance of social support, learning environment, and childhood adversities on a student's mental health illness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源