论文标题
受监视的开放费用动力学:探索测量,腐烂和自由汉密尔顿进化的相互作用
Monitored Open Fermion Dynamics: Exploring the Interplay of Measurement, Decoherence, and Free Hamiltonian Evolution
论文作者
论文摘要
多体系统中单一进化和局部测量的相互作用会导致随机状态进化和纯状态纠缠中测量引起的相变。但是,在现实的设置中,由于与环境或测量缺陷耦合,这种动态可能会因脱糖性而破坏。我们研究了dephasing和不可避免的进化对非高斯,混合状态对受监测费米子动态的影响。我们从三个互补的角度对其进行处理:(i)小型系统的条件主方程的精确解决方案,(ii)大型系统高斯状态的量子轨迹模拟,以及(iii)Bosonic Replica Fielt理论的重新归一化组分析。对于虚弱的dephasing,恒定监测保留了弱混合状态,该状态显示出稳健的测量诱导的临界相位和固定相之间的相变,如无腐烂的情况。在强烈的dephasing时,我们观察到了一个新量表的出现,描述了有效温度,该温度伴随着fermion密度矩阵的混合性增加。值得注意的是,即使在这个强烈的混合阶段,也可以观察到密度密度相关函数或子系统奇偶校验的不变行为。我们将其解释为无间隙,经典扩散的标志,这是通过汉密尔顿动力学,测量和腐蚀性的平衡相互作用来稳定的。
The interplay of unitary evolution and local measurements in many-body systems gives rise to a stochastic state evolution and to measurement-induced phase transitions in the pure state entanglement. In realistic settings, however, this dynamics may be spoiled by decoherence, e.g., dephasing, due to coupling to an environment or measurement imperfections. We investigate the impact of dephasing and the inevitable evolution into a non-Gaussian, mixed state, on the dynamics of monitored fermions. We approach it from three complementary perspectives: (i) the exact solution of the conditional master equation for small systems, (ii) quantum trajectory simulations of Gaussian states for large systems, and (iii) a renormalization group analysis of a bosonic replica field theory. For weak dephasing, constant monitoring preserves a weakly mixed state, which displays a robust measurement-induced phase transition between a critical and a pinned phase, as in the decoherence-free case. At strong dephasing, we observe the emergence of a new scale describing an effective temperature, which is accompanied with an increased mixedness of the fermion density matrix. Remarkably, observables such as density-density correlation functions or the subsystem parity still display scale invariant behavior even in this strongly mixed phase. We interpret this as a signature of gapless, classical diffusion, which is stabilized by the balanced interplay of Hamiltonian dynamics, measurements, and decoherence.