论文标题
具有连接的显式非亚伯gerbes
Explicit Non-Abelian Gerbes with Connections
论文作者
论文摘要
我们定义了严格谎言2组的调整概念,并为非亚洲辣椒提供完整的共生描述,其结构2组是调整后的2组。最重要的是,我们偏离了常见的假牌连接并采用调整后的连接。这是物理应用所需的重要概括,尤其是在超级实力的背景下。我们给出许多明确的例子;特别是,我们将$ s^4 $的自旋结构抬高,对应于Instanton-Anti-Instanton对,到一个带有连接的2组捆绑包。我们还概述了如何通过在扭曲器空间上的弦线束的penrose-ward变换来获得被称为自偶串的bogomolny单孔形式。
We define the notion of adjustment for strict Lie 2-groups and provide the complete cocycle description for non-Abelian gerbes with connections whose structure 2-group is an adjusted 2-group. Most importantly, we depart from the common fake-flat connections and employ adjusted connections. This is an important generalisation that is needed for physical applications especially in the context of supergravity. We give a number of explicit examples; in particular, we lift the spin structure on $S^4$, corresponding to an instanton-anti-instanton pair, to a string structure, a 2-group bundle with connection. We also outline how categorified forms of Bogomolny monopoles known as self-dual strings can be obtained via a Penrose-Ward transform of string bundles over twistor space.