论文标题

Hirota品种和理性节点曲线

Hirota Varieties and Rational Nodal Curves

论文作者

Fevola, Claudia, Mandelshtam, Yelena

论文摘要

Hirota品种将解决方程的解决方案参数化,该方程是由退化的Riemann theta函数引起的。在这项工作中,我们详细研究了由合理的节点曲线引起的广场品种。特别令人感兴趣的是定义为参数映射的图像的不可还原亚变量,我们将其称为主要组件。证明这是海洛塔品种的不可还原组成部分,对应于解决有理结节曲线的弱肖特基问题。我们使用计算工具将这个问题解决至九属。

The Hirota variety parameterizes solutions to the KP equation arising from a degenerate Riemann theta function. In this work, we study in detail the Hirota variety arising from a rational nodal curve. Of particular interest is the irreducible subvariety defined as the image of a parameterization map, we call this the main component. Proving that this is an irreducible component of the Hirota variety corresponds to solving a weak Schottky problem for rational nodal curves. We solve this problem up to genus nine using computational tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源