论文标题
$ t \ bar {t} $的纠缠重归其化 - 变形的CFT
Entanglement Renormalization of a $T\bar{T}$-deformed CFT
论文作者
论文摘要
在这项工作中,我们使用连续张量网络CMERA在线上找到$ t \ bar {t} $ - 变形标量CFT的高斯近似值,以在变形参数中的第一阶。结果用于找到对理论缩放算子的相关器的校正和半线的纠缠熵。从后者中,我们讨论了$ t \ bar {t} $ - 短长度尺度上的变形。我们发现,这些术语产生的非局部性可以被视为温和的,因为它不违反纠缠的地区法律。在CMERA和全息图之间的猜想联系的背景下,我们发现最初可以在CMERA的假定几何二重要描述中定义有限的散装半径。但是,熵分析与提出的建议相矛盾,即没有几何形状可以归因于此径向截止的区域。
In this work we use cMERA, a continuous tensor network, to find a Gaussian approximation to the ground state of a $T\bar{T}$-deformed scalar CFT on the line, to first order in the deformation parameter. The result is used to find the correction to the correlators of scaling operators of the theory and to the entanglement entropy of a half-line. From the latter, we discuss the non-localities induced by the $T\bar{T}$-deformation at short length scales. We find that the kind of non-locality generated by those terms can be considered as a mild-one, in the sense that it does not violate the area law of entanglement. In the context of the conjectured connection between cMERA and holography, we find that at first insight a finite bulk radius can be defined in the putative geometric dual description of cMERA. However, the entropy analysis contradicts the proposal that no geometry can be ascribed to the region outside this radial cutoff.