论文标题

通过信息路径计划,体现了用于语义细分的主动域的适应

Embodied Active Domain Adaptation for Semantic Segmentation via Informative Path Planning

论文作者

Zurbrügg, René, Blum, Hermann, Cadena, Cesar, Siegwart, Roland, Schmid, Lukas

论文摘要

这项工作提出了一种体现的代理,可以以完全自主的方式将其语义分割网络调整到新的室内环境中。由于语义分割网络无法很好地推广到看不见的环境,因此代理会收集新环境的图像,然后将其用于自我监督域的适应性。我们将其作为一个有益的路径计划问题提出,并提出一种新的信息增益,该信息利用从语义模型中提取的不确定性来安全地收集相关数据。随着域的适应性的进展,这些不确定性会随着时间的推移而发生变化,并且系统的快速学习反馈驱动代理人收集不同的数据。实验表明,与探索目标相比,我们的方法更快地适应了新环境,最终性能更高,并且可以成功地将其部署到物理机器人上的真实环境中。

This work presents an embodied agent that can adapt its semantic segmentation network to new indoor environments in a fully autonomous way. Because semantic segmentation networks fail to generalize well to unseen environments, the agent collects images of the new environment which are then used for self-supervised domain adaptation. We formulate this as an informative path planning problem, and present a novel information gain that leverages uncertainty extracted from the semantic model to safely collect relevant data. As domain adaptation progresses, these uncertainties change over time and the rapid learning feedback of our system drives the agent to collect different data. Experiments show that our method adapts to new environments faster and with higher final performance compared to an exploration objective, and can successfully be deployed to real-world environments on physical robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源