论文标题

包括:点云位置识别的增量学习

InCloud: Incremental Learning for Point Cloud Place Recognition

论文作者

Knights, Joshua, Moghadam, Peyman, Ramezani, Milad, Sridharan, Sridha, Fookes, Clinton

论文摘要

位置识别是机器人技术的基本组成部分,近年来通过使用深度学习模型看到了巨大的改进。当部署在看不见或高度动态的环境中时,网络可以体验到大幅下降,并且需要对收集的数据进行其他培训。但是,对新训练分布进行的天真微调可能会导致先前访问的领域的性能严重降解,这一现象称为灾难性遗忘。在本文中,我们解决了点云识别的增量学习问题,并引入了基于结构感知蒸馏的方法,可保留网络嵌入空间的高阶结构。我们在四个流行和大型LiDAR数据集(牛津,木兰,内部和Kitti)上介绍了几个挑战性的新基准测试,在各种网络架构上显示了Point Cloud Plote识别性能的广泛改进。据我们所知,这项工作是第一个有效地将增量学习应用于Point Cloud Place识别的工作。可以在https://github.com/csiro-robotics/incloud上找到本文的数据预处理,培训和评估代码。

Place recognition is a fundamental component of robotics, and has seen tremendous improvements through the use of deep learning models in recent years. Networks can experience significant drops in performance when deployed in unseen or highly dynamic environments, and require additional training on the collected data. However naively fine-tuning on new training distributions can cause severe degradation of performance on previously visited domains, a phenomenon known as catastrophic forgetting. In this paper we address the problem of incremental learning for point cloud place recognition and introduce InCloud, a structure-aware distillation-based approach which preserves the higher-order structure of the network's embedding space. We introduce several challenging new benchmarks on four popular and large-scale LiDAR datasets (Oxford, MulRan, In-house and KITTI) showing broad improvements in point cloud place recognition performance over a variety of network architectures. To the best of our knowledge, this work is the first to effectively apply incremental learning for point cloud place recognition. Data pre-processing, training and evaluation code for this paper can be found at https://github.com/csiro-robotics/InCloud.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源