论文标题

从飞行时间深度图像中检测无监督的异常检测

Unsupervised Anomaly Detection from Time-of-Flight Depth Images

论文作者

Schneider, Pascal, Rambach, Jason, Mirbach, Bruno, Stricker, Didier

论文摘要

视频异常检测(VAD)解决了自动在视频数据中找到异常事件的问题。当前VAD系统所起的主要数据模式是单色或RGB图像。尽管深度图像是许多其他计算机视觉研究领域的流行选择,并且在这种情况下,在这种情况下,在这种情况下使用深度数据仍然很难探索。我们评估了现有的基于自动编码器的方法在深度视频中的应用,并提出了如何通过集成到损失函数中利用深度数据的优势。训练是使用普通序列无监督的,而无需任何其他注释。我们表明,深度可以轻松提取辅助信息以前景面膜的形式进行场景分析,并通过对大型公共数据集进行评估来证明其对异常检测性能的有益效果,为此,我们也是第一个呈现结果的结果。

Video anomaly detection (VAD) addresses the problem of automatically finding anomalous events in video data. The primary data modalities on which current VAD systems work on are monochrome or RGB images. Using depth data in this context instead is still hardly explored in spite of depth images being a popular choice in many other computer vision research areas and the increasing availability of inexpensive depth camera hardware. We evaluate the application of existing autoencoder-based methods on depth video and propose how the advantages of using depth data can be leveraged by integration into the loss function. Training is done unsupervised using normal sequences without need for any additional annotations. We show that depth allows easy extraction of auxiliary information for scene analysis in the form of a foreground mask and demonstrate its beneficial effect on the anomaly detection performance through evaluation on a large public dataset, for which we are also the first ones to present results on.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源