论文标题
H4D:人类4D建模通过学习神经组成表示
H4D: Human 4D Modeling by Learning Neural Compositional Representation
论文作者
论文摘要
尽管基于深度学习的3D重建取得了令人印象深刻的结果,但对使用详细几何捕获的4D捕获的直接学习技术的研究却较少。这项工作提出了一个新颖的框架,可以通过从广泛使用的SMPL参数模型中利用人体来有效地学习动态人体的紧凑和组成表示。特别是,我们的表示为H4D的表示形式在时间跨度上代表了一个动态的3D人类,其形状和初始姿势的SMPL参数以及编码运动和辅助信息的潜在代码。提出了一个简单而有效的线性运动模型,以提供粗糙的正规运动估计,然后对姿势和几何细节进行人均补偿,并在辅助代码中编码的残差。从技术上讲,我们介绍了基于GRU的新型体系结构,以促进学习并提高表示能力。广泛的实验表明,我们的方法不仅在于通过准确的运动和详细的几何形状恢复动态人类的功效,而且还可以适合各种4D人类相关的任务,包括运动重试,运动完成和将来的预测。请查看项目页面以获取视频和代码:https://boyanjiang.github.io/h4d/。
Despite the impressive results achieved by deep learning based 3D reconstruction, the techniques of directly learning to model 4D human captures with detailed geometry have been less studied. This work presents a novel framework that can effectively learn a compact and compositional representation for dynamic human by exploiting the human body prior from the widely used SMPL parametric model. Particularly, our representation, named H4D, represents a dynamic 3D human over a temporal span with the SMPL parameters of shape and initial pose, and latent codes encoding motion and auxiliary information. A simple yet effective linear motion model is proposed to provide a rough and regularized motion estimation, followed by per-frame compensation for pose and geometry details with the residual encoded in the auxiliary code. Technically, we introduce novel GRU-based architectures to facilitate learning and improve the representation capability. Extensive experiments demonstrate our method is not only efficacy in recovering dynamic human with accurate motion and detailed geometry, but also amenable to various 4D human related tasks, including motion retargeting, motion completion and future prediction. Please check out the project page for video and code: https://boyanjiang.github.io/H4D/.