论文标题
监督Hebbian学习
Supervised Hebbian Learning
论文作者
论文摘要
在神经网络的文献中,Hebbian学习传统上是指Hopfield模型及其概括存储原型的程序(即,仅经历过一次形成突触矩阵的确定模式)。但是,机器学习中的“学习”一词是指机器从提供的数据集中提取功能的能力(例如,由这些原型的模糊示例制成),以便自己对不可用的原型表示自己的代表。在这里,给出了一个示例示例,我们定义了一个监督的学习协议,通过该协议可以通过该协议来推断原型,并检测到正确的控制参数(包括数据集的大小和质量),以描绘系统性能的相图。我们还证明,对于无结构数据集,配备了该监督学习规则的Hopfield模型等同于受限的Boltzmann机器,这表明是最佳且可解释的培训例程。最后,这种方法被推广到结构化的数据集:我们在分析的数据集中重点介绍了一个准剥离组织(让人联想起复制对称性 - 对称性破坏),因此,我们为其(部分)的分类介绍了一个额外的“复制性隐藏层”,以提高75%的架构,并为95%的架构提供一个新的分类,并可以提高95%的架构,并提供一个新的架构。
In neural network's Literature, Hebbian learning traditionally refers to the procedure by which the Hopfield model and its generalizations store archetypes (i.e., definite patterns that are experienced just once to form the synaptic matrix). However, the term "Learning" in Machine Learning refers to the ability of the machine to extract features from the supplied dataset (e.g., made of blurred examples of these archetypes), in order to make its own representation of the unavailable archetypes. Here, given a sample of examples, we define a supervised learning protocol by which the Hopfield network can infer the archetypes, and we detect the correct control parameters (including size and quality of the dataset) to depict a phase diagram for the system performance. We also prove that, for structureless datasets, the Hopfield model equipped with this supervised learning rule is equivalent to a restricted Boltzmann machine and this suggests an optimal and interpretable training routine. Finally, this approach is generalized to structured datasets: we highlight a quasi-ultrametric organization (reminiscent of replica-symmetry-breaking) in the analyzed datasets and, consequently, we introduce an additional "replica hidden layer" for its (partial) disentanglement, which is shown to improve MNIST classification from 75% to 95%, and to offer a new perspective on deep architectures.