论文标题
可靠的在线参数模型改进的拨浪鼓运动计划算法,并在轨道上验证
The RATTLE Motion Planning Algorithm for Robust Online Parametric Model Improvement with On-Orbit Validation
论文作者
论文摘要
在已知模型的背景下可以明确学习机器人系统相遇的某些形式的不确定性,例如参数模型不确定性,例如质量和惯性矩。量化这种参数不确定性对于更准确的系统行为预测很重要,从而导致安全而精确的任务执行。同时,也需要提供一种鲁棒性保证,以防止普遍的不确定性水平(如环境干扰和当前的模型知识)。为此,概述并扩展了作者先前提议的拨浪道算法,这是在线信息感知运动计划的框架,以增强其对真正的机器人系统的适用性。 Rattle在寻求信息的动议和传统的目标动议与具有在线升级的模型之间提供了明确的权衡。此外,提出了将信息内容自动调整到指定估计精度的自动调整信息的新方法,并提出了一种新方法。提出了使用Astrobee机器人在国际空间站上进行的微重力实验的结果,并提供了实际实施细节,证明了在参数不确定的情况下,在参数不确定的情况下,拨浪鼓的实时,可靠,在线升级和模型信息寻求运动计划能力。
Certain forms of uncertainty that robotic systems encounter can be explicitly learned within the context of a known model, like parametric model uncertainties such as mass and moments of inertia. Quantifying such parametric uncertainty is important for more accurate prediction of the system behavior, leading to safe and precise task execution. In tandem, providing a form of robustness guarantee against prevailing uncertainty levels like environmental disturbances and current model knowledge is also desirable. To that end, the authors' previously proposed RATTLE algorithm, a framework for online information-aware motion planning, is outlined and extended to enhance its applicability to real robotic systems. RATTLE provides a clear tradeoff between information-seeking motion and traditional goal-achieving motion and features online-updateable models. Additionally, online-updateable low level control robustness guarantees and a new method for automatic adjustment of information content down to a specified estimation precision is proposed. Results of extensive experimentation in microgravity using the Astrobee robots aboard the International Space Station and practical implementation details are presented, demonstrating RATTLE's capabilities for real-time, robust, online-updateable, and model information-seeking motion planning capabilities under parametric uncertainty.