论文标题

Cohen-MaCaulay加权方向的边缘理想及其Alexander Dual

Cohen-Macaulay Weighted Oriented Edge Ideals and its Alexander Dual

论文作者

Saha, Kamalesh, Sengupta, Indranath

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The study of the edge ideal $I(D_{G})$ of a weighted oriented graph $D_{G}$ with underlying graph $G$ started in the context of Reed-Muller type codes. We generalize a Cohen-Macaulay construction for $I(D_{G})$, which Villarreal gave for edge ideals of simple graphs. We use this construction to classify all the Cohen-Macaulay weighted oriented edge ideals, whose underlying graph is a cycle. We show that the conjecture on Cohen-Macaulayness of $I(D_{G})$, proposed by Pitones et al. (2019), holds for $I(D_{C_{n}})$, where $C_{n}$ denotes the cycle of length $n$. Miller generalized the concept of Alexander dual ideals of square-free monomial ideals to arbitrary monomial ideals, and in that direction, we study the Alexander dual of $I(D_{G})$ and its conditions to be Cohen-Macaulay.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源