论文标题
了解真空弧和梯度极限
Understanding Vacuum Arcs and Gradient Limits
论文作者
论文摘要
尽管真空弧和梯度极限的一般模型将在这些弧线上的第一个良好的实验数据之后的大约120年内广泛有用,但该重要领域仍未确定。这个问题是许多技术的限制,并且在许多领域都有应用。大的托卡马克人对面向组件的弧形敏感,利纳克成本取决于其最大工作场,功率传递效率取决于可以维持的电压,而原子探针断层扫描的效率取决于避免样品故障。对该领域的多学科研究可以提高所使用的理论模型的精度和适用性。我们概述了弧形所涉及的基本机制以及决定弧形物理学的问题。我们将过程分为四个阶段;触发,等离子体形成,血浆演化和表面损伤,以查看所涉及的物理原理。我们试图确定研发计划的主要机制,关键问题和理想的方面,以产生更精确和一般的模型。
Although a general model of vacuum arcs and gradient limits would be widely useful, roughly 120 years after the first good experimental data on these arcs, this important field continues to be unsettled. This problem is a limitation in a number of technologies and has applications in many fields. Large tokamaks are sensitive to arcing on the plasma facing components, linac costs depend on their maximum operating fields, power transmission efficiency depends on the voltage that can be maintained, and the efficiency of Atom Probe Tomography depends on avoiding sample failures. A multidisciplinary study of this field could improve the precision and applicability of the theoretical models used. We outline the basic mechanisms involved in arcing and the issues that determine the physics of arcs. We divide the process into four stages; the trigger, plasma formation, plasma evolution and surface damage, in order to look at the physical principles involved. We try to identify the dominant mechanisms, critical issues and desirable aspects of an R&D program to produce a more precise and general model.