论文标题
潜在形式:基于多代理变压器的相互作用建模和轨迹预测
LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and Trajectory Prediction
论文作者
论文摘要
多机构轨迹预测是自动驾驶中的一个基本问题。预测中的主要挑战是准确地预测周围代理的行为并了解场景环境。为了解决这些问题,我们提出了LetentFormer,这是一种基于变压器的模型,用于预测未来的车辆轨迹。所提出的方法利用一种新型技术来建模场景中动态对象之间的相互作用。与在观察期间建模跨代理相互作用的许多现有方法相反,我们的方法还利用了代理的未来状态。这是使用层次注意机制来完成的,在该机制中,代理的发展状态自动加入控制了最终预测中过去的轨迹和场景编码的贡献。此外,我们提出了一个多分辨率地图编码方案,该方案依靠视觉变压器模块有效地捕获本地和全球场景上下文,以指导产生更受允许的未来轨迹。我们在Nuscenes基准数据集上评估了所提出的方法,并表明我们的方法可实现最先进的性能,并将轨迹指标提高高达40%。我们通过广泛的消融研究进一步研究了提出技术的各个组成部分的贡献。
Multi-agent trajectory prediction is a fundamental problem in autonomous driving. The key challenges in prediction are accurately anticipating the behavior of surrounding agents and understanding the scene context. To address these problems, we propose LatentFormer, a transformer-based model for predicting future vehicle trajectories. The proposed method leverages a novel technique for modeling interactions among dynamic objects in the scene. Contrary to many existing approaches which model cross-agent interactions during the observation time, our method additionally exploits the future states of the agents. This is accomplished using a hierarchical attention mechanism where the evolving states of the agents autoregressively control the contributions of past trajectories and scene encodings in the final prediction. Furthermore, we propose a multi-resolution map encoding scheme that relies on a vision transformer module to effectively capture both local and global scene context to guide the generation of more admissible future trajectories. We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%. We further investigate the contributions of various components of the proposed technique via extensive ablation studies.