论文标题
全身MPC和动态阻塞避免:最大似然可见性方法
Whole-Body MPC and Dynamic Occlusion Avoidance: A Maximum Likelihood Visibility Approach
论文作者
论文摘要
本文介绍了一种新型的方法,用于全身运动计划和避免动态阻塞。提出的方法将可见性限制重新定义为可见性概率的可能性最大化。在此公式中,我们通过放松的对数屏障函数来增强全身模型预测控制方案的主要成本函数,从而产生可见性概率的松弛对数似然性最大化。可见性概率是通过概率的阴影场计算得出的,该概率阴影场量化了点光源的闭合。我们提供必要的算法,以获取2D和3D病例的此类字段。我们通过实时硬件实验在模拟和3D实现中演示了该字段的2D实现。我们表明,由于我们的阴影场算法与地图大小的线性复杂性,我们可以达到高更新速率,从而有助于在计算功率有限的移动平台上执行船上。最后,我们评估了拟议的MPC重新印象在四倍移动操纵器中的模拟中的性能。
This paper introduces a novel approach for whole-body motion planning and dynamic occlusion avoidance. The proposed approach reformulates the visibility constraint as a likelihood maximization of visibility probability. In this formulation, we augment the primary cost function of a whole-body model predictive control scheme through a relaxed log barrier function yielding a relaxed log-likelihood maximization formulation of visibility probability. The visibility probability is computed through a probabilistic shadow field that quantifies point light source occlusions. We provide the necessary algorithms to obtain such a field for both 2D and 3D cases. We demonstrate 2D implementations of this field in simulation and 3D implementations through real-time hardware experiments. We show that due to the linear complexity of our shadow field algorithm to the map size, we can achieve high update rates, which facilitates onboard execution on mobile platforms with limited computational power. Lastly, we evaluate the performance of the proposed MPC reformulation in simulation for a quadrupedal mobile manipulator.