论文标题
通过HyperGraph神经网络在多代理系统中的有效政策生成
Efficient Policy Generation in Multi-Agent Systems via Hypergraph Neural Network
论文作者
论文摘要
深度强化学习在多代理系统中的应用引入了额外的挑战。在与众多代理商的情况下,目前要解决的最重要问题之一是如何在不同的代理之间建立足够的合作。为了解决这个问题,我们考虑基于邻域的代理相互作用的形式,并根据参与者 - 批评方法提出了一种多机构增强学习(MARL)算法,该算法可以自适应地构建代表代理相互作用的超图结构,并进一步实施有效的信息提取和通过超刻型卷积网络实施有效的信息提取和表示,从而实现了有效的合作。基于不同的超图生成方法,我们提出了两个变体:Actor Hypergraph卷积批评网络(HGAC)和Actor注意力高图评论家网络(ATT-HGAC)。具有不同设置的实验证明了我们的方法比其他现有方法的优势。
The application of deep reinforcement learning in multi-agent systems introduces extra challenges. In a scenario with numerous agents, one of the most important concerns currently being addressed is how to develop sufficient collaboration between diverse agents. To address this problem, we consider the form of agent interaction based on neighborhood and propose a multi-agent reinforcement learning (MARL) algorithm based on the actor-critic method, which can adaptively construct the hypergraph structure representing the agent interaction and further implement effective information extraction and representation learning through hypergraph convolution networks, leading to effective cooperation. Based on different hypergraph generation methods, we present two variants: Actor Hypergraph Convolutional Critic Network (HGAC) and Actor Attention Hypergraph Critic Network (ATT-HGAC). Experiments with different settings demonstrate the advantages of our approach over other existing methods.