论文标题

保持准确和稳健:增强的核分析框架

Keep It Accurate and Robust: An Enhanced Nuclei Analysis Framework

论文作者

Zhang, Wenhua, Yang, Sen, Luo, Meiwei, He, Chuan, Li, Yuchen, Zhang, Jun, Wang, Xiyue, Wang, Fang

论文摘要

组织学图像中核的准确分割和分类至关重要,但由于核异质性,染色变化和组织复杂性而挑战。现有方法通常在有限的数据集变异性方面遇到困难,从相似的整个幻灯片图像(WSI)提取的补丁,使模型容易属于本地Optima。在这里,我们提出了一个新框架来解决此限制并实现鲁棒的核分析。我们的方法利用双级集合建模来克服来自有限的数据集变化引起的问题。重音内置将各种变化应用于各个样本,而相互汇总结合了不同尺度的网络。我们还向悬停网络体系结构介绍了增强功能,包括更新的编码器,嵌套密集的解码和模型正则化策略。我们在公共基准上实现了最新的结果,包括核成分预测的第一名和在2022年结肠核鉴定和计数(CONIC)挑战中进行分割/分类的第三名。这一成功验证了我们进行准确的组织学核分析的方法。广泛的实验和消融研究提供了有关最佳网络设计选择和培训技术的见解。总之,这项工作提出了一个改进的框架,可以推进核分析中最新的框架。我们发布代码和模型(https://github.com/winnielaugh/conic_pathology_ai),以作为社区的工具包。

Accurate segmentation and classification of nuclei in histology images is critical but challenging due to nuclei heterogeneity, staining variations, and tissue complexity. Existing methods often struggle with limited dataset variability, with patches extracted from similar whole slide images (WSI), making models prone to falling into local optima. Here we propose a new framework to address this limitation and enable robust nuclear analysis. Our method leverages dual-level ensemble modeling to overcome issues stemming from limited dataset variation. Intra-ensembling applies diverse transformations to individual samples, while inter-ensembling combines networks of different scales. We also introduce enhancements to the HoVer-Net architecture, including updated encoders, nested dense decoding and model regularization strategy. We achieve state-of-the-art results on public benchmarks, including 1st place for nuclear composition prediction and 3rd place for segmentation/classification in the 2022 Colon Nuclei Identification and Counting (CoNIC) Challenge. This success validates our approach for accurate histological nuclei analysis. Extensive experiments and ablation studies provide insights into optimal network design choices and training techniques. In conclusion, this work proposes an improved framework advancing the state-of-the-art in nuclei analysis. We release our code and models (https://github.com/WinnieLaugh/CONIC_Pathology_AI) to serve as a toolkit for the community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源