论文标题
Focusing NLS孤子和呼吸气体的光谱理论的最新发展:平均密度,通量和某些Meromormormormormormormorphic差异的热力学极限;周期性气体
Recent developments in spectral theory of the focusing NLS soliton and breather gases: the thermodynamic limit of average densities, fluxes and certain meromorphic differentials; periodic gases
论文作者
论文摘要
在本文中,我们考虑了一维积分焦点非线性schrödinger方程(FNLS)的孤子和呼气气体。我们通过研究FNLS有限间隙溶液的热力学极限来得出此类气体的平均密度和通量。还建立了准疗法,icienergy的热力学极限及其与相应的$ g $ - 功能的连接。 然后,我们介绍了周期性FNLS气体的概念,并为它们计算了它们的平均密度,磁通量和Meromormorphic差异的热力学极限。还包括对获得结果的某些准确性估计。 我们的结果构成了FNLS Soliton和G. El和A. Tovbis的作品中出现的FNLS Soliton和呼吸气体光谱理论的又一步。 Rev. E,2020年。
In this paper we consider soliton and breather gases for one dimensional integrable focusing Nonlinear Schrödinger Equation (fNLS). We derive average densities and fluxes for such gases by studying the thermodynamic limit of the fNLS finite gap solutions. Thermodynamic limits of quasimomentum, quasienergy and their connections with the corresponding $g$-functions were also established. We then introduce the notion of periodic fNLS gases and calculate for them the average densities, fluxes and thermodynamic limits of meromorphic differentials. Certain accuracy estimates of the obtained results are also included. Our results constitute another step towards the mathematical foundation for the spectral theory of fNLS soliton and breather gases that appeared in work of G. El and A. Tovbis, Phys. Rev. E, 2020.