论文标题

随机重置的一般方法

General approach to stochastic resetting

论文作者

Singh, R. K., Gorska, K., Sandev, T.

论文摘要

我们解决了随机重置对扩散和细胞扩散过程的影响。对于扩散,我们发现只有当重置时间的分布具有有限的均值和方差时,MSD才会放松到常数。在这种情况下,重置下高斯繁殖器的PDF的领先顺序贡献与重置时间分布的具体细节无关。为了进行细分,我们在拉普拉斯空间中得出PDF以进行任意重置协议。以恒定速率重置可以根据H功能评估PDF。我们分析稳态并得出控制放松行为的速率函数。对于一个宽带的过程,即使重置时间的分布仅具有有限的平均值,稳态也可能存在。

We address the effect of stochastic resetting on diffusion and subdiffusion process. For diffusion we find that MSD relaxes to a constant only when the distribution of reset times possess finite mean and variance. In this case, the leading order contribution to the PDF of a Gaussian propagator under resetting exhibits a cusp independent of the specific details of the reset time distribution. For subdiffusion we derive the PDF in Laplace space for arbitrary resetting protocol. Resetting at constant rate allows evaluation of the PDF in terms of H-function. We analyze the steady state and derive the rate function governing the relaxation behavior. For a subdiffusive process the steady state could exist even if the distribution of reset times possesses only finite mean.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源