论文标题

高级RK矩阵的无限规范界限和特征多项式

The infinity norm bounds and characteristic polynomial for high order RK matrices

论文作者

Caklovic, Gayatri

论文摘要

本文表明,$ t_m \ leq \ | \ mathbf {a} \ | _ \ infty \ leq \ sqrt {t_m} $保持,完全集成了$ 2M-2 $的多项式。可以证明,高斯 - 洛巴托正交也是如此。此外,当矩阵非发音时,$ \ mathbf {a} $的特征多项式为$ p_a(λ)= m! (t -t_1)\ dots(t -t_m)= t^m + a_ {m -1} t^{m -1} + \ dots + a_0 $。

This paper shows that $t_m \leq \|\mathbf{A}\|_\infty \leq \sqrt{t_m}$ holds, when $\mathbf{A} \in \mathbb{R}^{m \times m}$ is a Runge-Kutta matrix which nodes originating from the Gaussian quadrature that integrates polynomials of degree $2m-2$ exactly. It can be shown that this is also true for the Gauss-Lobatto quadrature. Additionally, the characteristic polynomial of $\mathbf{A}$, when the matrix is nonsingular, is $p_A(λ) = m!t^m + (m-1)!a_{m-1}t^{m-1} + \dots + a_0$, where the coefficients $a_i$ are the coefficients of the polynomial of nodes $ω(t) = (t - t_1) \dots (t - t_m) = t^m + a_{m-1}t^{m-1} + \dots + a_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源