论文标题
具有缓慢衰减初始数据的非线性波方程
Nonlinear wave equations with slowly decaying initial data
论文作者
论文摘要
通过$ \ ell^2 $ -Decoupling证明了BESOV空间中的新的本地平滑估计值。我们应用这些估计值以在两个维度的情况下为立方非线性波方程获得新的适应性结果。将结果与基于$ l^p $的Sobolev空间中的新型良好的结果进行了比较。
New local smoothing estimates in Besov spaces adapted to the half-wave group are proved via $\ell^2$-decoupling. We apply these estimates to obtain new well-posedness results for the cubic nonlinear wave equation in two dimensions. The results are compared to new well-posedness results in $L^p$-based Sobolev spaces.