论文标题

使用生成对抗网络模拟Ligo中的瞬态噪声爆发

Simulating Transient Noise Bursts in LIGO with Generative Adversarial Networks

论文作者

Lopez, Melissa, Boudart, Vincent, Buijsman, Kerwin, Reza, Amit, Caudill, Sarah

论文摘要

重力波(GW)干涉仪的噪声限制了其灵敏度并影响数据质量,从而阻碍了从天体物理来源检测到GW信号。对于瞬态搜索,最有问题的是瞬态噪声伪像,称为故障,以$ 1 \ text {min}^{ - 1} $的速度发生,并且可以模仿GW信号。因此,需要在大规模研究中更好地建模和包含小故障,例如应力测试管道。在这项概念验证工作中,我们采用了生成的对抗网络(GAN),这是一种受游戏理论启发的最先进的深度学习算法,以学习Blip Glitches的潜在分布并产生人工种群。我们在时间域中重建小故障,提供了甘恩可以学习的平滑输入。通过这种方法,我们可以在不到一秒钟的时间内创建$ \ sim 10^{3} $故障的分布。此外,我们采用多个指标来衡量我们的方法论的性能及其世代的质量。将来,这项调查将扩展到不同的小故障类,其最终目标是为模拟数据生成创建开源界面。

The noise of gravitational-wave (GW) interferometers limits their sensitivity and impacts the data quality, hindering the detection of GW signals from astrophysical sources. For transient searches, the most problematic are transient noise artifacts, known as glitches, that happen at a rate around $ 1 \text{ min}^{-1}$, and can mimic GW signals. Because of this, there is a need for better modeling and inclusion of glitches in large-scale studies, such as stress testing the pipelines. In this proof-of concept work we employ Generative Adversarial Networks (GAN), a state-of-the-art Deep Learning algorithm inspired by Game Theory, to learn the underlying distribution of blip glitches and to generate artificial populations. We reconstruct the glitch in the time-domain, providing a smooth input that the GAN can learn. With this methodology, we can create distributions of $\sim 10^{3}$ glitches from Hanford and Livingston detectors in less than one second. Furthermore, we employ several metrics to measure the performance of our methodology and the quality of its generations. This investigation will be extended in the future to different glitch classes with the final goal of creating an open-source interface for mock data generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源