论文标题

边界和分数量子厅边缘动力学的拓扑流体:手性玻色子作用的流体动力学推导

Topological fluids with boundaries and fractional quantum Hall edge dynamics: A fluid dynamics derivation of the chiral boson action

论文作者

Monteiro, Gustavo M., Nair, V. P., Ganeshan, Sriram

论文摘要

本文研究了Laughlin状态的批量和边界动力学,这些动态是在流体动力学框架内使用复合玻色子理论建模的。在这项工作中,我们基于具有拓扑术语的流体动力作用采用了另一种起点,该动作显然显然表现出Laughlin State的流体方面。对于特定的速度场选择,此动作的流体方程类似于一阶流体动力方程,并补充了一个额外的本构方程,称为霍尔约束。当存在硬壁边界时,流体作用中的拓扑术语之一会触发异常流入,表明边缘存在仪表异常。一阶流体动力方程需要第二个边界条件,在没有耗散的情况下,可以是无滑动或无压力条件。我们发现无滑动条件,其中流体粘附到壁上与手性边缘动力学不相容。另一方面,无压力条件,即使流体可以沿着墙壁移动而不会摩擦,这与劳克林州的预期手性边缘动力学一致。此外,我们的工作在变异原理中得出了这种经过修改的无压力边界条件。这是通过将手性玻色子作用纳入非线性耦合到边缘密度的边界作用中来实现的,从而系统地扩展了边缘手性Luttinger液体理论。

This paper investigates the bulk and boundary dynamics of Laughlin states, which are modeled using composite boson theory within a fluid dynamics framework. In this work, we adopt an alternative starting point based on a hydrodynamic action with topological terms, which fleshes out the fluid aspects of the Laughlin state manifestly. For a particular choice of the velocity field, the fluid equation for this action is akin to first-order hydrodynamic equations, supplemented with an additional constitutive equation known as the Hall constraint. When a hard wall boundary is present, one of the topological terms in the fluid action triggers anomaly inflow, indicating the presence of gauge anomaly at the edge. The first-order hydrodynamic equations require a second boundary condition which, in the absence of dissipation, can be either a no-slip or a no-stress condition. We find that the no-slip condition, where the fluid adheres to the wall is incompatible with the chiral edge dynamics. On the other hand, the no-stress condition, which allows the fluid to move along the wall without friction, is consistent with the expected chiral edge dynamics of the Laughlin state. Furthermore, our work derives this modified no-stress boundary condition within a variational principle. This is accomplished by incorporating a chiral boson action within the boundary action that is non-linearly coupled to the edge density, thus systematically extending the edge chiral Luttinger liquid theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源