论文标题
正弦戈登eqft的随机控制方法
A stochastic control approach to Sine Gordon EQFT
论文作者
论文摘要
我们研究了无限体积的$β{2} <4π$的正弦模型。我们给出了其拉普拉斯变换的变异表征,并从这种巨大的偏差中推断出来。在途中,我们获得了足够强的估计值,以获得Osterwalder-Schrader公理的证明,包括相关性作为副产品的指数衰减。我们的方法基于Boue-Dupuis公式,重点是该问题的随机控制结构。
We study the Sine-Gordon model for $β^{2}< 4 π$ in infinite volume. We give a variatonal characterization of it's laplace transform, and deduce from this large deviations. Along the way we obtain estimates which are strong enough to obtain a proof of the Osterwalder-Schrader axioms including exponential decay of correlations as a byproduct. Our method is based on the Boue-Dupuis formula with an emphasis on the stochastic control structure of the problem.