论文标题

在算术几何形状中产生“新”半正交分解

Producing "new" semi-orthogonal decompositions in arithmetic geometry

论文作者

Bondarko, Mikhail V.

论文摘要

本文致力于构建“旧”类别的“新”可允许的子类别和半正交分解。对于两个三角形的子类别,$ t $和$ t $的一定$ d $和$ t $ $ t $的分解$(l,r)$ t $,我们要么为分解$(l',r',r')$ of $ t'$,因此没有$ l-Zero $ d $ - 从$ l $ l $ r $ r $ r'$ r'd d d d d $ r'd d d $',或$ d $使得$ l_d \ cap t = l $和$ r_d \ cap t = r $。我们证明了一些一般存在的语句(还扩展到具有任何数量的组件的半正交分解),并将它们应用于方案$ x $的各种派生类别的连贯式滑轮类别,这在Noetherian Ring $ r $上是适当的。这给出了$ d_ {perf}(x)$和$ d^b_ {coh}(x)$的半正交分解之间的一对S对应关系;后者延伸至$ d^-_ {coh}(x)$,$ d^+_ {coh}({qCoh}(x))$,$ d_ {coh}({qCoh}(x)(x)(x))$,和$ d({qCoh}(x)(x)(x)(x))$。特别是,我们获得了J. Karmazyn,A。Kuznetsov和E. Shinder定理的广泛概括。 这些应用程序依赖于Neeman的最新结果,即表示$ d^b_ {coh}(x)$和$ d^-_ {coh}(x)$在$ d_ {perf}(perf}(x)$方面,其新变化及其对应于$ d^+_ {coh}(coh}(coh}(q poh}(x)(x)(x)(x)(x)$ d_})$ and $ d _}(coh)(我们还讨论了该定理对某些伴随函子的构建的应用。

This paper is devoted to constructing "new" admissible subcategories and semi-orthogonal decompositions of triangulated categories out of "old" ones. For two triangulated subcategories $T$ and $T'$ of a certain $D$ and a decomposition $(L,R)$ of $T$ we look either for a decomposition $(L',R')$ of $T'$ such that there are no non-zero $D$-morphisms from $L$ into $L'$ and from $R$ into $R'$, or for a decomposition $(L_D,R_D)$ of $D$ such that $L_D\cap T=L$ and $R_D\cap T=R$. We prove some general existence statements (that also extend to semi-orthogonal decompositions with any number of components) and apply them to various derived categories of coherent sheaves over a scheme $X$ that is proper over a noetherian ring $R$. This gives a one-to-one correspondence between semi-orthogonal decompositions of $D_{perf}(X)$ and $D^b_{coh}(X)$; the latter extend to $D^-_{coh}(X)$, $D^+_{coh}({Qcoh}(X))$, $D_{coh}({Qcoh}(X))$, and $D({Qcoh}(X))$ under very mild conditions. In particular, we obtain a vast generalization of a theorem of J. Karmazyn, A. Kuznetsov, and E. Shinder. These applications rely on recent results of Neeman that express $D^b_{coh}(X)$ and $D^-_{coh}(X)$ in terms of $D_{perf}(X)$ along with its new variations corresponding to $D^+_{coh}({Qcoh}(X))$ and $D_{coh}({Qcoh}(X))$. We also discuss an application of this theorem to the construction of certain adjoint functors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源