论文标题
用于2D形状分类的物理神经细胞自动机
Physical Neural Cellular Automata for 2D Shape Classification
论文作者
论文摘要
具有自我分类的能力的材料有可能推进广泛的工程应用和行业。生物系统不仅具有自我调查的能力,而且还具有自我分类以确定一般形状和功能的能力。模块化机器人系统的先前工作仅使自我认识和自我授权成为特定的目标形状,而错过了自然界中存在的固有鲁棒性来自我分类。因此,在本文中,我们利用了深度学习和神经细胞自动机的最新进展,并提出了一个简单的模块化2D机器人系统,该系统可以通过其组件的局部交流来推断其自己的形状类别。此外,我们表明我们的系统可以成功地转移到硬件上,从而为未来的自我分类机提供了机会。可在https://github.com/kattwalker/projectCube上获得代码。视频可在https://youtu.be/0tcoke4keyc上找到。
Materials with the ability to self-classify their own shape have the potential to advance a wide range of engineering applications and industries. Biological systems possess the ability not only to self-reconfigure but also to self-classify themselves to determine a general shape and function. Previous work into modular robotics systems has only enabled self-recognition and self-reconfiguration into a specific target shape, missing the inherent robustness present in nature to self-classify. In this paper we therefore take advantage of recent advances in deep learning and neural cellular automata, and present a simple modular 2D robotic system that can infer its own class of shape through the local communication of its components. Furthermore, we show that our system can be successfully transferred to hardware which thus opens opportunities for future self-classifying machines. Code available at https://github.com/kattwalker/projectcube. Video available at https://youtu.be/0TCOkE4keyc.