论文标题
电子孔结合控制卤化物钙钛矿纳米晶薄膜中的载体运输
Electron-Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films
论文作者
论文摘要
二维卤化物钙钛矿纳米片(NPL)具有出色的发光特性,包括宽光谱可调性,超快辐射衰减,高量子产率(QY)和方向发射。为了实现有效的设备,必须了解激子运输在NPL薄膜中的发展。由于电子孔对的高结合能,激子通常被认为是负责载体转移的主要物种。我们采用空间和时间分辨的光学显微镜在15°C至50°C之间绘制钙钛矿纳米晶体(NC)薄膜中的激子扩散。在室温(RT)下,我们发现扩散长度与纳米晶体(NCS)的厚度成反比。随着温度的升高,所有NC膜的激子扩散均下降,但速率不同。这导致了特定的温度转换点,其中较薄的NPL表现出更高的扩散长度。我们将这种异常的扩散行为归因于激子和温度范围内单个NC内部的自由电子孔对的共存。 NCS周围的有机配体外壳可防止电荷转移。因此,每当电子孔对在未结合状态下花费的任何时间都会降低FRET介导的NC间传输速率,从而降低整体扩散。这些结果阐明了激子扩散在强限的卤化物钙钛矿NC膜中的发展,强调了光电设备的关键考虑。
Two-dimensional halide perovskite nanoplatelets (NPLs) have exceptional light-emitting properties, including wide spectral tunability, ultrafast radiative decays, high quantum yields (QY), and oriented emission. To realize efficient devices, it is imperative to understand how exciton transport progresses in NPL thin films. Due to the high binding energies of electron-hole pairs, excitons are generally considered the dominant species responsible for carrier transfer. We employ spatially and temporally resolved optical microscopy to map exciton diffusion in perovskite nanocrystal (NC) thin films between 15 °C and 50 °C. At room temperature (RT), we find the diffusion length to be inversely correlated to the thickness of the nanocrystals (NCs). With increasing temperatures, exciton diffusion declines for all NC films, but at different rates. This leads to specific temperature turnover points, at which thinner NPLs exhibit higher diffusion lengths. We attribute this anomalous diffusion behavior to the coexistence of excitons and free electron hole-pairs inside the individual NCs within our temperature range. The organic ligand shell surrounding the NCs prevents charge transfer. Accordingly, any time an electron-hole pair spends in the unbound state reduces the FRET-mediated inter-NC transfer rates and consequently the overall diffusion. These results clarify how exciton diffusion progresses in strongly confined halide perovskite NC films, emphasizing critical considerations for optoelectronic devices.