论文标题
$(p,q)$ - 准iminimizizer的较高的集成性和稳定性
Higher integrability and stability of $(p,q)$-quasiminimizers
论文作者
论文摘要
使用纯粹的变异方法,我们证明了$(p,q)$ - 与固定边界数据的元素的上梯度的局部和全局更高的可集成性结果,前提是它属于牛顿稍更好的牛顿空间。我们还获得了有关不同指数$ p $和$ q $的稳定属性。该设置是支持庞加莱不平等的两倍度量量度空间。
Using purely variational methods, we prove local and global higher integrability results for upper gradients of quasiminimizers of a $(p,q)$-Dirichlet integral with fixed boundary data, assuming it belongs to a slightly better Newtonian space. We also obtain a stability property with respect to the varying exponents $p$ and $q$. The setting is a doubling metric measure space supporting a Poincaré inequality.