论文标题

$(p,q)$ - 准iminimizizer的较高的集成性和稳定性

Higher integrability and stability of $(p,q)$-quasiminimizers

论文作者

Nastasi, Antonella, Camacho, Cintia Pacchiano

论文摘要

使用纯粹的变异方法,我们证明了$(p,q)$ - 与固定边界数据的元素的上梯度的局部和全局更高的可集成性结果,前提是它属于牛顿稍更好的牛顿空间。我们还获得了有关不同指数$ p $和$ q $的稳定属性。该设置是支持庞加莱不平等的两倍度量量度空间。

Using purely variational methods, we prove local and global higher integrability results for upper gradients of quasiminimizers of a $(p,q)$-Dirichlet integral with fixed boundary data, assuming it belongs to a slightly better Newtonian space. We also obtain a stability property with respect to the varying exponents $p$ and $q$. The setting is a doubling metric measure space supporting a Poincaré inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源