论文标题

在细胞,组织和器官尺度心房生理学上比较传播模型和正向计算方法

Comparison of propagation models and forward calculation methods on cellular, tissue and organ scale atrial electrophysiology

论文作者

Nagel, Claudia, Espinosa, Cristian Barrios, Gillette, Karli, Gsell, Matthias A. F., Sánchez, Jorge, Plank, Gernot, Dössel, Olaf, Loewe, Axel

论文摘要

目的:双域模型和有限元方法是数学上描述心脏电生理学的既定标准,但由于高计算成本,快速和大规模模拟都是次优的选择。我们研究了传播模型(单域,反应 - 欧基和eikonal和eikonal)的简化方法以及正向计算(边界元素和无限体积导体)提供了显着加速,但在生理上准确的模拟会导致心房生理学。方法:我们比较了动作潜在持续时间,局部激活时间(LATS)和心电图(ECGS),用于健康和纤维化浸润的心房模型的窦性节律模拟。结果:所有简化的模型溶液均符合双域的结果准确地产生了LATS和P波。仅对于具有预计动作电势模板的Eikonal模型随时间移动以推导跨膜电压,重极化行为显着偏离了双域的结果。与有限元方法相比,用边界元素方法计算出的ECG的相关系数> 0.9。无限的体积导体方法导致相关系数较低,主要是由于p波幅度在前端铅中的系统高估。结论:我们的结果表明,与明显更昂贵的全bidomain模拟相比,Eikonal模型可产生准确的LATS,并与边界元素方法精确的ECG结合使用。但是,为了准确表示心房复极化动力学,必须在简化模型中考虑扩散项。意义:通过诉诸艾科纳尔和边界元素方法,可以显着将心房LATS和ECG的模拟以高精度加速到临床上可行的时间范围。

Objective: The bidomain model and the finite element method are an established standard to mathematically describe cardiac electrophysiology, but are both suboptimal choices for fast and large-scale simulations due to high computational costs. We investigate to what extent simplified approaches for propagation models (monodomain, reaction-eikonal and eikonal) and forward calculation (boundary element and infinite volume conductor) deliver markedly accelerated, yet physiologically accurate simulation results in atrial electrophysiology. Methods: We compared action potential durations, local activation times (LATs), and electrocardiograms (ECGs) for sinus rhythm simulations on healthy and fibrotically infiltrated atrial models. Results: All simplified model solutions yielded LATs and P waves in accurate accordance with the bidomain results. Only for the eikonal model with pre-computed action potential templates shifted in time to derive transmembrane voltages, repolarization behavior notably deviated from the bidomain results. ECGs calculated with the boundary element method were characterized by correlation coefficients >0.9 compared to the finite element method. The infinite volume conductor method led to lower correlation coefficients caused predominantly by systematic overestimations of P wave amplitudes in the precordial leads. Conclusion: Our results demonstrate that the eikonal model yields accurate LATs and combined with the boundary element method precise ECGs compared to markedly more expensive full bidomain simulations. However, for an accurate representation of atrial repolarization dynamics, diffusion terms must be accounted for in simplified models. Significance: Simulations of atrial LATs and ECGs can be notably accelerated to clinically feasible time frames at high accuracy by resorting to the eikonal and boundary element methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源