论文标题

自动对准:在步态任务视频上使用计算机愿景的自动共济失调风险评估

Auto-Gait: Automatic Ataxia Risk Assessment with Computer Vision on Gait Task Videos

论文作者

Rahman, Wasifur, Hasan, Masum, Islam, Md Saiful, Olubajo, Titilayo, Thaker, Jeet, Abdelkader, Abdelrahman, Yang, Phillip, Ashizawa, Tetsuo, Hoque, Ehsan

论文摘要

在本文中,我们研究了是否可以1)检测具有共同特异性步态特征(风险预测)的参与者,以及2)使用计算机视觉评估步态(严重性评估)的共济失调的严重程度。我们创建了一个来自89名参与者,24个控件和65个诊断为(或为manifest的)脊椎动物(SCAS)(SCAS)的155个视频的数据集,执行了来自美国各州8个不同州的11个医疗网站的(SARA)评估和评级的量表的步态任务。我们开发了一条计算机视觉管道,以检测,跟踪和将参与者与周围环境分开,并从身体姿势坐标中构建几个功能,以捕获步态特征,例如步长,步长,挥杆,挥杆,稳定性,速度等。我们的风险预测模型达到83.06%的精度和80.23%的F1得分。同样,我们的严重性评估模型的平均绝对误差(MAE)得分为0.6225,皮尔森的相关系数得分为0.7268。当对培训期间未使用的网站的数据进行评估时,我们的模型仍然具有竞争力。此外,通过特征的重要性分析,我们发现我们的模型会促进更广泛的步骤,降低步行速度,并增加了不稳定性,而不稳定性则具有更大的共济失调严重程度,这与先前确定的临床知识一致。我们的模型将来可以在非临床环境中进行远程共济失调评估,这可能会大大改善共济失调护理的可及性。此外,我们的基础数据集是从地理上多样的队列中组装而成的,突出了其进一步提高股权的潜力。这项研究中使用的代码向公众开放,并且可以根据要求提供匿名的身体姿势地标数据集。

In this paper, we investigated whether we can 1) detect participants with ataxia-specific gait characteristics (risk-prediction), and 2) assess severity of ataxia from gait (severity-assessment) using computer vision. We created a dataset of 155 videos from 89 participants, 24 controls and 65 diagnosed with (or are pre-manifest) spinocerebellar ataxias (SCAs), performing the gait task of the Scale for the Assessment and Rating of Ataxia (SARA) from 11 medical sites located in 8 different states across the United States. We develop a computer vision pipeline to detect, track, and separate out the participants from their surroundings and construct several features from their body pose coordinates to capture gait characteristics like step width, step length, swing, stability, speed, etc. Our risk-prediction model achieves 83.06% accuracy and an 80.23% F1 score. Similarly, our severity-assessment model achieves a mean absolute error (MAE) score of 0.6225 and a Pearson's correlation coefficient score of 0.7268. Our models still performed competitively when evaluated on data from sites not used during training. Furthermore, through feature importance analysis, we found that our models associate wider steps, decreased walking speed, and increased instability with greater ataxia severity, which is consistent with previously established clinical knowledge. Our models create possibilities for remote ataxia assessment in non-clinical settings in the future, which could significantly improve accessibility of ataxia care. Furthermore, our underlying dataset was assembled from a geographically diverse cohort, highlighting its potential to further increase equity. The code used in this study is open to the public, and the anonymized body pose landmark dataset is also available upon request.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源