论文标题
关于二维球的色数
On the chromatic number of 2-dimensional spheres
论文作者
论文摘要
1976年,西蒙斯(Simmons)猜想,半径二维球的每种着色严格大于$ 1/2 $三种颜色的$ 1/2 $,在距离1的距离上有几个单色点。我们证明了这个猜想。
In 1976 Simmons conjectured that every coloring of a 2-dimensional sphere of radius strictly greater than $1/2$ in three colors has a couple of monochromatic points at the distance 1 apart. We prove this conjecture.