论文标题

杂交网络:端到端感知网络

HybridNets: End-to-End Perception Network

论文作者

Vu, Dat, Ngo, Bao, Phan, Hung

论文摘要

端到端网络在多任务中变得越来越重要。一个重要的例子是驾驶感知系统在自动驾驶中的重要性越来越重要。本文系统地研究了用于多任务的端到端感知网络,并提出了一些关键优化以提高准确性。首先,本文提出了基于加权双向功能网络的有效分割头和框/类预测网络。其次,本文提出了加权双向特征网络中每个级别的自动定制锚。第三,本文提出了有效的培训损失功能和培训策略,以平衡和优化网络。基于这些优化,我们开发了一个端到端的感知网络来执行多任务处理,包括交通对象检测,可驱动的区域细分和巷道检测,称为Hybridnets,它的准确性比以前的艺术更高。特别是,Hybridnets在伯克利DeepDrive数据集上达到77.3平均平均精度,超过31.6的平均相交的车道检测,与1283万参数和156亿个浮点操作相比。此外,它可以实时执行视觉感知任务,因此是解决多任务问题的实用和准确的解决方案。代码可从https://github.com/datvuthanh/hybridnets获得。

End-to-end Network has become increasingly important in multi-tasking. One prominent example of this is the growing significance of a driving perception system in autonomous driving. This paper systematically studies an end-to-end perception network for multi-tasking and proposes several key optimizations to improve accuracy. First, the paper proposes efficient segmentation head and box/class prediction networks based on weighted bidirectional feature network. Second, the paper proposes automatically customized anchor for each level in the weighted bidirectional feature network. Third, the paper proposes an efficient training loss function and training strategy to balance and optimize network. Based on these optimizations, we have developed an end-to-end perception network to perform multi-tasking, including traffic object detection, drivable area segmentation and lane detection simultaneously, called HybridNets, which achieves better accuracy than prior art. In particular, HybridNets achieves 77.3 mean Average Precision on Berkeley DeepDrive Dataset, outperforms lane detection with 31.6 mean Intersection Over Union with 12.83 million parameters and 15.6 billion floating-point operations. In addition, it can perform visual perception tasks in real-time and thus is a practical and accurate solution to the multi-tasking problem. Code is available at https://github.com/datvuthanh/HybridNets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源