论文标题

使用断层片切片的顺序作为神经网络的先验训练

Using the Order of Tomographic Slices as a Prior for Neural Networks Pre-Training

论文作者

Zharov, Yaroslav, Ershov, Alexey, Baumbach, Tilo, Heuveline, Vincent

论文摘要

计算机断层扫描(CT)的技术进步允许获得大量的3D数据。对于此类数据集,获得准确的3D分割标记来训练神经网络是非常昂贵且耗时的。注释通常用于有限数量的2D切片,然后进行插值。在这项工作中,我们提出了一种预训练方法分类。它在切片而不是体积上进行预训练,因此可以在稀疏的切片集上微调模型,而无需插值步骤。与一般方法(例如SIMCLR或Barlow Twins)不同,任务特定的方法(例如,可转移的视觉词)通过对输入数据施加更强的假设来对质量收益进行广泛的适用性。我们提出了一个相对温和的假设 - 如果我们沿着某个体积的某个轴(在这些切片上显示的样品的结构)进行几个切片,则应给出一个强烈的线索,以重建沿轴线的这些切片的正确顺序。由于样品的特定解剖结构和成像设置的预定义对齐,许多生物医学数据集都满足了这一要求。我们在两个数据集上检查了提出的方法:由COVID-19疾病影响的肺部医疗CT,以及基于高分辨率同步加速器的模型生物体(Medaka Fish)的高分辨率同步体CT。我们表明,所提出的方法与SIMCLR相同,同时更快地工作2倍,并且需要减少1.5倍的内存。此外,我们在实际情况方面介绍了好处,尤其是适用于大型模型的预培训以及在无监督的设置中将样品定位的能力。

The technical advances in Computed Tomography (CT) allow to obtain immense amounts of 3D data. For such datasets it is very costly and time-consuming to obtain the accurate 3D segmentation markup to train neural networks. The annotation is typically done for a limited number of 2D slices, followed by an interpolation. In this work, we propose a pre-training method SortingLoss. It performs pre-training on slices instead of volumes, so that a model could be fine-tuned on a sparse set of slices, without the interpolation step. Unlike general methods (e.g. SimCLR or Barlow Twins), the task specific methods (e.g. Transferable Visual Words) trade broad applicability for quality benefits by imposing stronger assumptions on the input data. We propose a relatively mild assumption -- if we take several slices along some axis of a volume, structure of the sample presented on those slices, should give a strong clue to reconstruct the correct order of those slices along the axis. Many biomedical datasets fulfill this requirement due to the specific anatomy of a sample and pre-defined alignment of the imaging setup. We examine the proposed method on two datasets: medical CT of lungs affected by COVID-19 disease, and high-resolution synchrotron-based full-body CT of model organisms (Medaka fish). We show that the proposed method performs on par with SimCLR, while working 2x faster and requiring 1.5x less memory. In addition, we present the benefits in terms of practical scenarios, especially the applicability to the pre-training of large models and the ability to localize samples within volumes in an unsupervised setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源