论文标题

决策在错误校准下

Decision-Making under Miscalibration

论文作者

Rothblum, Guy N., Yona, Gal

论文摘要

基于ML的预测用于告知有关个人的结果决策。我们应该如何使用预测(例如心脏病发作的风险)来告知下游二进制分类决策(例如,接受医疗程序)?当风险估计得出完美校准时,答案就会充分理解:分类问题的成本结构会导致最佳处理阈值$ j^{\ star} $。但是,实际上,不可避免的是一定程度的错误校准,这引发了一个基本问题:一个人应该如何使用潜在误解的预测来为二进制决策提供信息?我们正式化了一个天然(无分配)解决方案概念:给定预期的$α$的错误校准,我们建议使用阈值$ j $,从而最大程度地减少了所有$α$α$ a $启用的预测变量,而遗憾是遗憾在于使用问题和使用最佳阈值的临床实用性差异。当使用预期和最大校准误差测量错误校准时,我们为$ j $提供封闭形式的表达式,这表明它确实与$ j^{\ star} $(完美校准下的最佳阈值)不同。我们在真实数据上验证了我们的理论发现,表明在某些情况下,使用$ J $做出决定可以改善临床实用性。

ML-based predictions are used to inform consequential decisions about individuals. How should we use predictions (e.g., risk of heart attack) to inform downstream binary classification decisions (e.g., undergoing a medical procedure)? When the risk estimates are perfectly calibrated, the answer is well understood: a classification problem's cost structure induces an optimal treatment threshold $j^{\star}$. In practice, however, some amount of miscalibration is unavoidable, raising a fundamental question: how should one use potentially miscalibrated predictions to inform binary decisions? We formalize a natural (distribution-free) solution concept: given anticipated miscalibration of $α$, we propose using the threshold $j$ that minimizes the worst-case regret over all $α$-miscalibrated predictors, where the regret is the difference in clinical utility between using the threshold in question and using the optimal threshold in hindsight. We provide closed form expressions for $j$ when miscalibration is measured using both expected and maximum calibration error, which reveal that it indeed differs from $j^{\star}$ (the optimal threshold under perfect calibration). We validate our theoretical findings on real data, demonstrating that there are natural cases in which making decisions using $j$ improves the clinical utility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源