论文标题

元重量图神经网络:将极限推向全球同质的范围

Meta-Weight Graph Neural Network: Push the Limits Beyond Global Homophily

论文作者

Ma, Xiaojun, Chen, Qin, Ren, Yuanyi, Song, Guojie, Wang, Liang

论文摘要

图形神经网络(GNN)通过汇总邻居的信息并在下游任务中使用集成表示来显示出强大的表达能力。图中每个节点的相同聚合方法和参数用于使GNN能够利用同质关系数据。但是,并非所有图形都是均匀的,即使在同一图中,分布也可能有很大差异。在所有节点上使用相同的卷积可能会导致各种图形模式的无知。此外,许多现有的GNN都集成了节点特征和结构,这忽略了节点的分布,进一步限制了GNN的表达能力。为了解决这些问题,我们提出了元重量图神经网络(MWGNN),以适应不同节点的图形卷积层。首先,我们从节点特征,拓扑结构和位置身份方面对节点局部分布(NLD)进行建模,并与元重量进行建模。然后,基于元重量,我们生成自适应图卷积以执行节点特定的加权聚合并增强节点表示。最后,我们设计了关于现实世界和合成基准测试的广泛实验,以评估MWGNN的有效性。这些实验表明,MWGNN在处理具有各种分布的图形数据时具有出色的表达能力。

Graph Neural Networks (GNNs) show strong expressive power on graph data mining, by aggregating information from neighbors and using the integrated representation in the downstream tasks. The same aggregation methods and parameters for each node in a graph are used to enable the GNNs to utilize the homophily relational data. However, not all graphs are homophilic, even in the same graph, the distributions may vary significantly. Using the same convolution over all nodes may lead to the ignorance of various graph patterns. Furthermore, many existing GNNs integrate node features and structure identically, which ignores the distributions of nodes and further limits the expressive power of GNNs. To solve these problems, we propose Meta Weight Graph Neural Network (MWGNN) to adaptively construct graph convolution layers for different nodes. First, we model the Node Local Distribution (NLD) from node feature, topological structure and positional identity aspects with the Meta-Weight. Then, based on the Meta-Weight, we generate the adaptive graph convolutions to perform a node-specific weighted aggregation and boost the node representations. Finally, we design extensive experiments on real-world and synthetic benchmarks to evaluate the effectiveness of MWGNN. These experiments show the excellent expressive power of MWGNN in dealing with graph data with various distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源