论文标题
学习推力推理:数学单词问题解决作为复杂的关系提取
Learning to Reason Deductively: Math Word Problem Solving as Complex Relation Extraction
论文作者
论文摘要
解决数学单词问题需要对文本中的数量进行演绎推理。各种最近的研究工作主要依赖于序列到序列或序列模型,以生成数学表达式,而无需在给定情况下明确执行数量之间的关系推理。尽管经验上有效,但这种方法通常并未为生成的表达提供解释。在这项工作中,我们将任务视为一个复杂的关系提取问题,提出了一种新的方法,该方法提出了可解释的演绎推理步骤,以迭代构建目标表达式,其中每个步骤涉及两个定义其关系的数量的原始操作。通过在四个基准数据集上进行的大量实验,我们表明所提出的模型显着优于现有的强基础。我们进一步证明,演绎过程不仅提出了更可解释的步骤,而且还使我们能够对需要更复杂推理的问题进行更准确的预测。
Solving math word problems requires deductive reasoning over the quantities in the text. Various recent research efforts mostly relied on sequence-to-sequence or sequence-to-tree models to generate mathematical expressions without explicitly performing relational reasoning between quantities in the given context. While empirically effective, such approaches typically do not provide explanations for the generated expressions. In this work, we view the task as a complex relation extraction problem, proposing a novel approach that presents explainable deductive reasoning steps to iteratively construct target expressions, where each step involves a primitive operation over two quantities defining their relation. Through extensive experiments on four benchmark datasets, we show that the proposed model significantly outperforms existing strong baselines. We further demonstrate that the deductive procedure not only presents more explainable steps but also enables us to make more accurate predictions on questions that require more complex reasoning.