论文标题
具有不完美的记忆和纠缠交换的量子中继器的确切速率分析
Exact rate analysis for quantum repeaters with imperfect memories and entanglement swapping as soon as possible
论文作者
论文摘要
我们提供了一个秘密密钥的确切速率分析,该秘密键可以在两方之间使用线性量子中继器链分享。我们的主要动机之一是解决一个问题,在现实的环境中,是否简单地将量子记忆放置在量子通信渠道上是否有益。基础模型假设单旋量子记忆的确定性纠缠交换,它排除了较高嵌套水平上的概率纠缠蒸馏,从而排除了双向经典通信。在此框架内,我们确定任何最佳中继器方案的基本属性:并行,纠缠交换,尽快交换并尽可能少地平行量子存储。尽管这些功能对于最简单的中继器和一个中间站来说是显而易见的或微不足道的,但对于更多的车站来说,它们不能总是组合在一起。我们提出了一个最佳方案,包括通道丢失和记忆力,证明了其对两个站点的最佳性,并为总体情况猜测。在更现实的环境中,我们考虑了其他工具和参数,例如记忆截止,多路复用,初始状态和交换门保真度以及有限的链接耦合效率,以确定内存量的量子密钥分布中的潜在量子,超出了一个超过一个最小的量子重复率的中间站,并超过了两种量子的交流,以及在全部情况下可获得的频率,以及在各个方向上获得的交流,以及在各个方面都可以通过稳定的态度来确定。
We present an exact rate analysis for a secret key that can be shared among two parties employing a linear quantum repeater chain. One of our main motivations is to address the question whether simply placing quantum memories along a quantum communication channel can be beneficial in a realistic setting. The underlying model assumes deterministic entanglement swapping of single-spin quantum memories and it excludes probabilistic entanglement distillation, and thus two-way classical communication, on higher nesting levels. Within this framework, we identify the essential properties of any optimal repeater scheme: entanglement distribution in parallel, entanglement swapping as soon and parallel quantum storage as little as possible. While these features are obvious or trivial for the simplest repeater with one middle station, for more stations they cannot always be combined. We propose an optimal scheme including channel loss and memory dephasing, proving its optimality for the case of two stations and conjecturing it for the general case. In an even more realistic setting, we consider additional tools and parameters such as memory cut-offs, multiplexing, initial state and swapping gate fidelities, and finite link coupling efficiencies in order to identify potential regimes in memory-assisted quantum key distribution beyond one middle station that exceed the rates of the smallest quantum repeaters as well as those obtainable in all-optical schemes unassisted by stationary memory qubits and two-way classical communication.