论文标题
时间序列中异常检测的不同反事实解释
Diverse Counterfactual Explanations for Anomaly Detection in Time Series
论文作者
论文摘要
在实践中,数据驱动的数据驱动的方法无处不在,但通常它们无法为其做出的预测提供有用的解释。在这项工作中,我们提出了一种模型不足的算法,该算法为时间序列异常检测模型生成反事实集合解释。我们的方法生成了一组不同的反事实示例,即原始时间序列的多个扰动版本,这些版本不被检测模型视为异常。由于扰动的幅度受到限制,因此这些反事实代表了与原始时间序列相似的输入集合,该集合将模型认为正常情况。我们的算法适用于任何可区分的异常检测模型。我们研究了方法对单变量和多变量现实世界数据集的价值以及两个基于深度学习的异常检测模型,这是在先前在其他数据域中提出的一些解释性标准,例如有效性,合理性,亲密性和多样性。我们表明,我们的算法可以产生满足这些标准的反事实示例的集合,并且由于新型的可视化类型,可以比现有方法传达对模型内部机制的更丰富的解释。此外,我们设计了方法的稀疏变体,以提高对高维时间序列异常的反事实解释的解释性。在这种情况下,我们的解释仅在几个维度上进行了本地化,因此可以更有效地传达与模型的用户。
Data-driven methods that detect anomalies in times series data are ubiquitous in practice, but they are in general unable to provide helpful explanations for the predictions they make. In this work we propose a model-agnostic algorithm that generates counterfactual ensemble explanations for time series anomaly detection models. Our method generates a set of diverse counterfactual examples, i.e, multiple perturbed versions of the original time series that are not considered anomalous by the detection model. Since the magnitude of the perturbations is limited, these counterfactuals represent an ensemble of inputs similar to the original time series that the model would deem normal. Our algorithm is applicable to any differentiable anomaly detection model. We investigate the value of our method on univariate and multivariate real-world datasets and two deep-learning-based anomaly detection models, under several explainability criteria previously proposed in other data domains such as Validity, Plausibility, Closeness and Diversity. We show that our algorithm can produce ensembles of counterfactual examples that satisfy these criteria and thanks to a novel type of visualisation, can convey a richer interpretation of a model's internal mechanism than existing methods. Moreover, we design a sparse variant of our method to improve the interpretability of counterfactual explanations for high-dimensional time series anomalies. In this setting, our explanation is localised on only a few dimensions and can therefore be communicated more efficiently to the model's user.