论文标题

TMDC单层中的Valley Engineering电子孔液体

Valley engineering electron-hole liquids in TMDC monolayers

论文作者

Ray, Arnab Barman, Liang, Kevin, Vamivakas, Nick

论文摘要

电子孔液体(EHL)是物质的相关状态和热力学液体,最近在室温下存在于MOS2的悬浮单层中。与自由激子相比,液体内部辐射重组的速率明显更高,对光电应用(例如宽带激光)的承诺具有希望。在本文中,我们表明,利用MOS2中的山谷物理学可能是实现EHL特定特征的可调性的途径,例如发射波长,线宽,最重要的是液体密度。在散装半导体和TMDC单层中形成的EHL形成的条件非常严格,需要散装半导体中的高晶体纯度和低温温度,并在单层中悬浮。使用一个简单而强大的模型来描述免费的激子,并表明在基板支持的单层样品中可能是可行的。 EHL的更可重复的实验实现可能是回答有关电子孔相关性质以及如何用于产生非平凡状态的问题的问题。

Electron-hole liquids(EHLs), a correlated state of matter and a thermodynamic liquid, have recently been found to exist at room temperature in suspended monolayers of MoS2. Appreciably higher rates of radiative recombination inside the liquid as compared to free excitons hold promise for optoelectronic applications such as broadband lasing. In this paper, we show that leveraging the valley physics in MoS2 may be a route towards achieving tunability of specific characteristics of an EHL, such as emission wavelength, linewidth, and most importantly, the liquid density. The conditions under which EHLs form, in bulk semiconductors as well as TMDC monolayers are quite stringent, requiring high crystal purity and cryogenic temperatures in bulk semiconductors, and suspension in monolayers. Using a simple yet powerful model for describing free excitons and show that a phase transition into the EHL state may be feasible in substrate-supported monolayer samples. More repeatable experimental realizations of EHLs may be essential to answer questions regarding the nature of electron-hole correlations and how they may be used to generate non-trivial states of light.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源