论文标题
VLSP 2021 -VIMRC挑战:越南机器阅读理解
VLSP 2021 - ViMRC Challenge: Vietnamese Machine Reading Comprehension
论文作者
论文摘要
自然语言理解的新兴研究趋势之一是机器阅读理解(MRC),这是根据文本数据找到人类问题的答案的任务。现有用于MRC研究的越南数据集仅集中于可回答的问题。但是,实际上,在给定的文本数据中没有说明正确答案的问题是无法回答的。为了解决弱点,我们为研究界提供了一个名为UIT-Viquad 2.0的基准数据集,用于评估MRC任务和越南语言的问答系统。我们将UIT-Viquad 2.0用作基准数据集,以在越南语言和语音处理的第八个研讨会上挑战越南MRC的挑战(VLSP 2021)。这项任务吸引了来自34个大学和其他组织的77个参与者团队。在本文中,我们介绍了挑战组织的详细信息,共享任务参与者采用的方法的概述以及结果。最高的表现是F1得分为77.24%,在私人测试集上的精确匹配中为67.43%。前三名团队提出的越南MRC系统使用XLM-Roberta,这是一种基于变压器体系结构的强大预训练的语言模型。 UIT-Viquad 2.0数据集促使研究人员进一步探索越南机器阅读理解任务和相关任务,例如问题回答,问题产生和自然语言推断。
One of the emerging research trends in natural language understanding is machine reading comprehension (MRC) which is the task to find answers to human questions based on textual data. Existing Vietnamese datasets for MRC research concentrate solely on answerable questions. However, in reality, questions can be unanswerable for which the correct answer is not stated in the given textual data. To address the weakness, we provide the research community with a benchmark dataset named UIT-ViQuAD 2.0 for evaluating the MRC task and question answering systems for the Vietnamese language. We use UIT-ViQuAD 2.0 as a benchmark dataset for the challenge on Vietnamese MRC at the Eighth Workshop on Vietnamese Language and Speech Processing (VLSP 2021). This task attracted 77 participant teams from 34 universities and other organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 77.24% in F1-score and 67.43% in Exact Match on the private test set. The Vietnamese MRC systems proposed by the top 3 teams use XLM-RoBERTa, a powerful pre-trained language model based on the transformer architecture. The UIT-ViQuAD 2.0 dataset motivates researchers to further explore the Vietnamese machine reading comprehension task and related tasks such as question answering, question generation, and natural language inference.