论文标题

3D透明对象重建的混合网状神经表示

Hybrid Mesh-neural Representation for 3D Transparent Object Reconstruction

论文作者

Xu, Jiamin, Zhu, Zihan, Bao, Hujun, Xu, Weiwei

论文摘要

我们提出了一种新的方法,可以在自然光条件下使用手持式捕获的图像重建透明物体的3D形状。它结合了显式网格和多层感知器(MLP)网络(一种混合表示)的优势,以简化最近贡献中使用的捕获设置。通过多视图轮廓获得初始形状后,我们引入了基于表面的本地MLP,以编码顶点位移场(VDF)以重建表面细节。本地MLP的设计允许使用两个层MLP网络以零件方式表示VDF,这对优化算法有益。在表面上定义本地MLP而不是音量也减少了搜索空间。这样的混合表示使我们能够放宽代表我们设计的射线电池对应关系的光路相的射线像素对应关系,这大大简化了基于单图像的环境矩阵算法的实现。我们评估了具有地面真相模型的几个透明对象上的表示和重建算法。我们的实验表明,我们的方法可以使用简化的数据采集设置产生高质量的重建结果优于最先进的方法。

We propose a novel method to reconstruct the 3D shapes of transparent objects using hand-held captured images under natural light conditions. It combines the advantage of explicit mesh and multi-layer perceptron (MLP) network, a hybrid representation, to simplify the capture setting used in recent contributions. After obtaining an initial shape through the multi-view silhouettes, we introduce surface-based local MLPs to encode the vertex displacement field (VDF) for the reconstruction of surface details. The design of local MLPs allows to represent the VDF in a piece-wise manner using two layer MLP networks, which is beneficial to the optimization algorithm. Defining local MLPs on the surface instead of the volume also reduces the searching space. Such a hybrid representation enables us to relax the ray-pixel correspondences that represent the light path constraint to our designed ray-cell correspondences, which significantly simplifies the implementation of single-image based environment matting algorithm. We evaluate our representation and reconstruction algorithm on several transparent objects with ground truth models. Our experiments show that our method can produce high-quality reconstruction results superior to state-of-the-art methods using a simplified data acquisition setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源